

Reg.	No.	:	 	 		 •••	•••			
Name	ρ.									

Seventh Semester B.Tech. Degree Examination, April 2015 (2008 Scheme)

08.702 : POWER SYSTEM ENGINEERING - III (E)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions:

- Explain the significance of load flow analysis in power system.
- 2. What is meant by incremental loss and how it affects the penalty factor?
- 3. Mention the various constraints on unit commitment.
- 4. How series capacitors improve the performance of transmission lines?
- 5. Derive power-angle equation.
- 6. Explain briefly any one type of SVC.
- 7. What is specific energy consumption for a train run?

- Mention the problems associated with the use of ground as return conductor in HVDC system.
- What is meant by insulation coordination?
- 10. How surge diverters protect the transmission system?

(10×4=40 Marks)

PART-B

Answer one question from each Module:

Module-I

11. Details of a 3 bus system is shown in table. All impedances are in p.u. on 100 MVA base. The maximum and minimum reactive power limits for bus 3 are 300 and 0 MVAR respectively. Compute the voltage magnitudes and angles at the end of second iteration using Gauss-Seidel method with an acceleration factor of 1.6.

Bus Code	Impedance
1-2	0.02 + j 0.04
1 – 3	0.01 + j 0.03
2 – 3	0.0125 + j 0.025

Bus Code	V	Gen	eration	Load				
		PMW	QMVAR	PMW	QMVAR			
1	1.05 + j0	-	e tot evale	0.0	0.0			
2	-	0.0	0.0	400	250			
3	1.04	200		0.0	0.0			

20

- 12. a) State the assumptions and derive the equation for power in DC load flow.
 - b) Which are the relations to be decoupled in FDLF and why is it faster than other methods?
 - c) Differentiate between economic dispatch and unit commitment.

5

8

7

Module - II

13. a) Two system areas are connected by a tie line with the following characteristics:

13.	a)	I wo system areas are co	office dealby a tie life with the following characteristics.						
		Area 1	Area 2						
		R = 0.01 p.u.	Area 2 R = 0.02 p.u. R = 0.02 p.u.						
		D = 0.8 p.u.	D = 1.0 p.u.						
		Base MVA = 500	Base MVA = 500						
			MW occurs in area 1. What is the new steady state he change in tie flow? Assume both areas were at	10					
	h)	Explain the operating pr		10					
	D)	explain the operating pr	inciple of a OFT C.	10					
14.	a)	Discuss various methods for improving stability limits of power system.							
	b)		elivering 1.0 p.u. power to an infinite bus through a						
		transmission network. The maximum power which can be transferred for pre-fault, during fault and post fault conditions are 1.8 p.u., 0.4. p.u. and 1.3 p.u. Find the critical clearing angle.							
			Module – III						
15.	15. a) A train has scheduled speed of 60 km/hr between stops which are 6 kn apart. Determine the crest speed over the run, assuming trapezoidal speed time curve. The train accelerates at 2 km/hr/s and retards at 3 km/hr/s.								
		Duration of stop is 60 s		10					
	b)	Compare AC and DC tr	ansmission systems.	5					
	c)	Explain different types	of DC links.	5					
16.	a)	Draw and explain the c	onverter control characteristics of HVDC system.	10					
	b)	Explain Bewly lattice di	agram.	10					